Two of the biggest tanks that will form part of ITER’s Cryoplant have safely arrived at Fos-sur-Mer, the port of Marseille. The massive components, produced by Air Liquide and their subcontractor Chart Ferox, are 35 m long and have a diameter of 4.5 m. They weigh approximately 160 tonnes each, which is the weight of a blue whale, our planet’s heaviest mammal. How will these huge tanks reach the ITER site? The answer is simple: an exceptional convoy of 140 m will drive them from the port to “home”. The transport will be overviewed by DAHER, responsible for the global logistics of the ITER project.
F4E and ITER International Organization (IO) have been closely supervising the manufacturing process of the two tanks, which was successfully concluded in May earlier this year. Due to this summer’s heat wave, the water level of Elbe was too low to start with the first leg of the shipment. Therefore, we had to wait for the autumn rainfalls to set in motion the delivery of the quench tanks.
On 18 October, the teams got the green light to transfer the first tank to the port of Usti and load it onto the barge. Two days later, the second tank followed. Both components travelled safely to the port of Hamburg, where they stopped over to change vessel, and on 27 October left for the port of Berre-l’Etang, Marseille. Subsequently, they were transferred to the port of Fos-sur-Mer from where they are expected to leave for ITER.
The two pieces of equipment are extremely important to ITER’s cryogenic system. The machine will use powerful superconducting magnets to entrap the hot plasma which is expected to reach 150 million ˚C. In order to achieve this, cold helium will circulate inside the magnets to bring their temperature down to -269 ˚C. However, from time to time the magnets might experience a so-called quench. Basically, they will stop being superconducting, start becoming resistant and their temperature will start rising rapidly. Consequently, it will no longer be possible to confine the hot plasma. As the temperature rises, the helium circulating through the cryogenic system will start to expand and will need to be extracted from the machine. When this phenomenon occurs the gas will be directed to these tanks, where it will be stored at -196 ˚C.
To read more about the contract signed between F4E and Air Liquide click here
F4E in collaboration with Ansaldo Nucleare, Westinghouse, Walter Tosto complete impressive component.
IDOM to produce first parts of the system measuring plasma fast particles.
KIT will support the production of ITER gyrotrons.
SMEs and big companies can flag their expertise and explore fusion business opportunities.
Get inspired through the stories of our F4E colleagues.
The consortium receives €10,000 from F4E for taking know-how from ITER to other Big Science…