Components

How will we monitor the temperature of ITER plasma?

Inside the ITER Vacuum Vessel, the plasma will reach 150 million °C to produce the fusion reaction. Such high temperature is necessary for the deuterium and tritium to fuse and release energy. But how can we monitor temperature in such harsh environment? Several diagnostic systems will measure different parameters to control the experiment. The Core Plasma Thomson Scattering (CPTS) system will be the “thermometer” of the ITER plasma.

F4E has signed a contract with IDOM to develop this system. The CPTS will send laser light into the vacuum vessel, and the electrons in the plasma will scatter it. By collecting and analysing the scattered light, the system will provide real-time measures of the electron density and temperature of the fusion reaction. The contract will run for 31 months, during which the contractor will develop a preliminary design of the CPTS and some prototypes of the most challenging components. The total cost of the activities is in the range of 7.2 M EUR.

A complex system of mirrors will collect the scattered light from inside the vacuum vessel. They will be located in the ITER Equatorial Port 10.

The CPTS will be deployed from inside the vacuum vessel to the diagnostic building. “Designing this system requires having a wide experience in various disciplines such as vacuum technologies, nuclear safety, complex mechanical components and integration, high power lasers, etc. Therefore, it is also a challenge to be involved in such a multi-disciplinary contract,” explains Laura Sánchez, F4E Technical Project Officer of this contract.

Maitane Amarika Aranberri, IDOM Project Officer of the CPTS project, explains their expertise to tackle this task. “IDOM brings on this project expertise in the design of complex optical/mechatronic systems in different environments such as the Jules Horowitz Reactor (JHR), ITER and high altitude/remote astronomical observatories like the Extremely Large Telescope (ELT). IDOM is supported in this effort by the Ioffe Institute, Kampf Telescope Optics and the UK Atomic Energy Authority”.

press@f4e.europa.eu

Recent Posts

Is Europe ready to lead the fusion energy race?

F4E Roundtable brings together policy makers, industry, SMEs, start-ups, and laboratories to shape tomorrow’s strategy.

6 days ago

European systems ready to power Japanese gyrotrons in JT-60SA

Integrated tests by F4E, QST, JEMA Energy achieved 1 MW of radio frequency power.

1 week ago

The F4E Fusion Observatory presents a report on private sector investment

Europe behind US in start-up market but leads in funding for the ITER supply chain.

2 weeks ago

The ITER Fast Discharge building is completed

F4E and European constructors also hand over the busbar bridges.

3 weeks ago

The foundations of IFMIF-DONES facility are laid

Japan joins the partnership as multilateral agreement progresses.

4 weeks ago

F4E and Air Liquide get ITER’s Cryoplant ready

Commissioning of European systems advancing after successful mechanical tests.

1 month ago