Components

Europe ready to prove the fabrication of Test Blanket Modules

DEMO, the fusion device that will follow ITER, will need to re-generate the tritium consumed during the reaction. In order to achieve this, it will be equipped with a breeding blanket that will generate tritium as the neutrons from the fusion reaction touch its surface. They will also extract the thermal power produced by the plasma so that it can be used later to produce electricity. Although ITER will not be self-sufficient in tritium, it will provide a unique opportunity to test mock-ups of different breeding blanket concepts.

Water Cooled Lithium-Lead (WCLL) European Test Blanket Module concept.

At present, the goal is to demonstrate the feasibility of the fabrication of Test Blanket Modules (TBM). F4E hosted an Information Day in March 2020 to offer background information and details on the launch of a framework contract expected to run for five years in this area. Several companies interested in taking part in this effort applied in the tendering process that was open until the 31st of October 2020. After assessing the different candidates, three tenders have been awarded the contract, ranked in order of priority: CEA/Framatome (France), ATMOSTAT (France) and ENSA (Spain).

“F4E’s award procedure took into account relevant knowledge, experience and personnel, availability of an appropriate infrastructure and the response to a business case which imitated foreseen activities. A kick-off meeting took place on 15 June and a first task order will be placed soon,” explains Milan Zmitko, F4E Technical Responsible Officer for Fabrication Development. The value of the contract is in the range of 7.7 million EUR, and will involve four or five different task orders. CEA/Framatome will receive the first one. F4E may request services to the second or third-ranked contractors only when the contract with the first or second is terminated.

Some TBM subcomponents already manufactured.

The awarded companies will have to focus on several areas to proof the feasibility of the TBM-sets fabrication and assembly processes. For instance, they will have to deal with welding processes and related technologies for manufacturing of EUROFER97 structures, the newly developed steel that provides adequate resistance to neutron irradiation. They will have to do so following requirements stemming from nuclear regulations. They will also develop welding and assembly procedures of several TBM parts, design manufacturing mock-ups of them and perform a variety of tests on the components, among other activities that will run until 2026.

press@f4e.europa.eu

Recent Posts

F4E and Air Liquide get ITER’s Cryoplant ready

Commissioning of European systems advancing after successful mechanical tests.

1 week ago

F4E industrial partners give feedback on Fusion Expert Group report

Importance of ITER, private sector involvement and a stronger F4E amongst the key findings.

2 weeks ago

F4E and VTT advance remote handling solutions for ITER

New grant for the Finnish research centre to develop divertor assembly technologies.

3 weeks ago

Europe completes first Factory Acceptance Test for ITER Divertor Cassette series

F4E, SIMIC-CSI and ITER Organization celebrate important technical milestone.

1 month ago

New fusion opportunities and partnerships at the ITER Business Forum

F4E provides updates to European companies and the global supply chain.

1 month ago

How will ITER measure the temperature of components facing the plasma?

Empresarios Agrupados, Bertin and AVS to manufacture diagnostic components for F4E.

1 month ago